A Linear Implicit Finite Difference Discretization of the Schrödinger–Hirota Equation
نویسندگان
چکیده
منابع مشابه
The new implicit finite difference method for the solution of time fractional advection-dispersion equation
In this paper, a numerical solution of time fractional advection-dispersion equations are presented.The new implicit nite dierence methods for solving these equations are studied. We examinepractical numerical methods to solve a class of initial-boundary value fractional partial dierentialequations with variable coecients on a nite domain. Stability, consistency, and (therefore) convergenceof t...
متن کاملA New Implicit Finite Difference Method for Solving Time Fractional Diffusion Equation
In this paper, a time fractional diffusion equation on a finite domain is con- sidered. The time fractional diffusion equation is obtained from the standard diffusion equation by replacing the first order time derivative by a fractional derivative of order 0 < a< 1 (in the Riemann-Liovill or Caputo sence). In equation that we consider the time fractional derivative is in...
متن کاملFinite Difference Discretization of the Cubic Schrödinger Equation
We analyze the discretization of an initial-boundary value problem for the cubic Schrödinger equation in one space dimension by a Crank–Nicolson–type finite difference scheme. We then linearize the corresponding equations at each time level by Newton’s method and discuss an iterative modification of the linearized scheme which requires solving linear systems with the same tridiagonal matrix. We...
متن کاملFinite Difference Discretization of the Kuramoto–sivashinsky Equation
We analyze a Crank–Nicolson–type finite difference scheme for the Kuramoto– Sivashinsky equation in one space dimension with periodic boundary conditions. We discuss linearizations of the scheme and derive second–order error estimates.
متن کاملThe new implicit finite difference scheme for two-sided space-time fractional partial differential equation
Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Scientific Computing
سال: 2018
ISSN: 0885-7474,1573-7691
DOI: 10.1007/s10915-018-0718-6